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In connection with the construction of a more precise theory for the bending
of plates [1] there arises the problem of determlning the conditions for the
exlstence of decaying solutions for a semistrip free of stresses along the
longutudinal edges under various boundary conditions. Sufficient conditions
for exlstence of decaying solutions, which are expressible by means of series
in Papkovich functions [3], were obtained in [2] for two problems that cor-
respond to prescribing, on the edge, one condition for the stress and one
condition of displacement. The case when both components of displacement

are given on the edge, has not been investigated as yet.

In the present paper the Laplace transform is used for the derivation of
solutlions of the Lamé's equations. This permits one to approach the problems
corresponding to different boundary condltions from one viewpoint only, and
to determine necessary and sufficient conditions for the existence of decsay-
ing solutions.

1. Let us consider four types of conditions on the boundary x = 0 of
the semistrip

o, 0, 9) = f @), Ty (0, y) = fo (y) (Problem 1) (1.1)
2uu (0,y) = f1 (), Ty 0,9 = f: @) (Problem 2) (1‘2))

o, (0, y) = f1 (v), 2uv (0,y) = f () (Problem 3) 3)
2”’ u 0, y) = f1 ), 2“‘ v (0, ) = fa (¥) (Problem 1})

The boundary conditions for vy = + 1 , have the followling form for each
of the four problems:

Oy (1‘, i 1) = 0, Txu (.Z', i 1) =0 (15)

We shall determine the conditions &necessary and sufficient) which are
imposed on the boundary functions f, {y) , s=(y) in order that the solution
of the equations of Lamé

Pu  O%u P*r
(A -+ 20) 35 - 1 37 4w axdy 0

d%u

oty ' ar o (1.6)
p,—8;2+ W = 2p) 0”372%_ * 4+ 9rdy
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which corresponds to the prescribed conditions on the boundary and on the
semistrip egdes, and has the decaying character in the x-direction, 1.e.
wlx, y) ~ 0, vlx, y) ~0 as x -~ = ,

Let us consider the solution of Lamé's equations in the class of functions
which includes decaylng and Increaslng functions. Let us assume that the
order of the increasing functions is nor higher than a power of x &as x- o,

We now apply Laplace's transform to x 1n Lamé's equation. Setting

[ee] e

vy = ey et Vg = (v weras .7
0 o

we obtain for U(p; y) and V(p; uw) the following second order nonhomogene-
ous system of ordlnary differential equatlons

2U A2 A - av 1
L ) s
1.8)
v n Atp U 14
ay? +7&+2}Lp2v+k+2“p—6?_7\.+2p,‘Y(p’y)
where
du | 2
O = 0H B | O WGy | O 2 0
o B (1.9

av

¥y =n5s

du
T eAwg | O

The general solution of (1.8) contains four arbitrary constants depending
on p , and 1t has the form
U (p, ) = a1 (p) sin py -+ a; (p) cos py + as (p) py cos py +
+ a (p) py sin py + Us (05 ¥) (1.10)
V (p, ¥) = (— a3 (p) — %10, (p)) sin py + (a; (p) — %05 (p)) coS py +

+ a4 (p) py cos py — ay (p) py sin py + V4 (D, ¥)
where

Uy (0, ¥) = by (p, ¥) sin py + by (py y) c0s py 4 bs (p, ) py cos py 4
<+ be(py ¥) py sin py (1.11)

Vo (py ¥) = (— by (p, ) — %04 (p, W) 8in py > (b1 (2, ¥) ~ %105 (2, ¥)) co8 py 4

+ b (p, ¥) py cos py — by (p, ¥) py sin py
v

by (2 9) = | [¥ (5, 3) py 05 py 4 © (p, ) G4y €08 by — py sin p)] dy
U
Y

b (p, y)=-§~& [— ¥ (p, ) py sin py — @ (p, ¥} (4, 8in py $ py cos py)} dy
Yz

Y
bs () = =\ [¥ (5, ) sin py + @ (p, 9) 0o pyl dy (142
z;
*
be (2, 1) = =\ [= ¥ (5, 4) 005 py + ® (5, ) sin py] dy
Y2
A+ 3 At
MERTF = m o+ 2m

If the stresses in {1.5) are expressed in terms of displacements, and if
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one applies the Laplace transform, there results

av
— RO, £+ G+ G| U ) =0
y==1

oU {1.13)
w0, £ 1) —@-}yﬂl g (py 1) = 0

Conditions (1.13) permit one to determine the qa,(p) (1 =1, 2, 3, 4)
of (1.10).

2. Let us next investigate the skewsymmetric deformation of the semistrip.
We assume that the functions y, (y) are odd in (1.1) to (1.4), and that the
functions r.(y) are even, that the coefficients g,(p) , a,(p) in the gen-
eral solution are zero, and that in (1.12) the lower bounds of vy and y,
are — 1 and O, respectively. Determining g, (p) and a,(p) with the aid
of the condition ?1.13 , We have

1 A+ 2 A 2u) 1
o (p) = —-m[bz(p. 1)(00521»— ktru”>+pb4(p; 1) (-p——li(;f—:;_tl;)—f—)T)—

A + 2p sin p)j!

cospy 1 ‘
) 2v(0,1)(~003p+x+p 7

p_

A ) 2
o 0, 1) (sm P+ ey .1

N Y L T A
@@= = 5oy [~ 80 0+ 0 (i — 25

cos p sin p]
p p i’

The values of b,(p,1) and b»,(p,1) are obtained from {1.12) by setting
v=1.

From what has been said it follows that Expressions (1.10) for U{p,y)
and V(p,y) cohtain the quantities u (z,y), ou/dx, du/dy, v (x,y), Ov/ oz,
dv /8y when x = O . In the case of the boundary conditions (1.1)to (1.%),
only some of these quantities are known., Hence, Expesssions (1.10) contaln
quantitlies known from the boundary conditions as well as unknown quantities.

In the plane of the complex variable p , the functions U(p,y) and ¥{p,y)
have singularities at the points which correspond to the roots of Equation

A 1 .
—z;u(O,i) —5 v 01 @ (p) =sinpcosp—p

@ (p)=sinpcosp—p=20 (2.2)

This equation has a root of the third order at the origin and has an infi-
nite number of quadruples of complex roots of the first order

Py Eny i ];”v — “n (n = 1, 2, .. .).

Correspondingly, U(p,v) has a pole of the third order at the point p = 0,
and poles of the first order at the complex roots of Equation (2.2), while

v(p,y) has a pole of the fourth order at the point p = O and poles of the
first order at the remaining roots of Equation (2.2).

By hypothesis, u(x,y) and »(x,y) belong to the class of functions whose
order of growth {as x - =) 1is not higher than a power of x . Therefore,
U(p;v) and v(p;y) must not have singularities tc the right of the imaginary
axis., For this it 1s necessary that the residues of U (p;y) ™, V %; y) eP*
at the poles P,, p, with a positive real part must be zero. the vanish-~
ing of these residues 1s sufficlent to insure that the growth order of
ulx,v), v{x,v) (as x = = ) be not higher than a power of x .

Evaluating the residues of U (p; ) ¢! and V (p; y) ¢”" at the pole p,, we
obtain

<

A -+ 20

" x B - \ I . Q
tes, U (73 ) = F 05y | (902 pu— T it p = o py e

Ppx

k] ) > H - ' ol PaX .
res, V (p;y) eP* = F (r,) oo (5 [ (cos- D +m> €os p,y -+ P,y sin pny] e ™ (2.3)
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where
1

F(py) = \{11' Pps ) [p,.y sin pn,y + cos ppy (mgz Ppt x_i“g )] +

0
. A+ 2n
<+ D (P, W) [pny cos py — sin p.y (cos2 Pp— m)]} dy — (2.4)

A +2w p A+ 2p)
'——_—}»—l-p. u (0, 1) cos p,, — P

From the vanishing of the reidues of U (p;y) e™, V (p; y) €’ at the poles
with positive real parts, it follows that

v (0, 1) sin p,

Fp,) =0 (n=1,2...) (2.5)
Making use of the inversion theorem, we obtain
o+i oo ' 04}'00
1 L -
o= gy | TGO, v =g | VD 60
g-i00 6—~i 00
1herefore, o
u(z,y) = 21 (res_, 4 1es 2 ) U (p; y) €™ + reso U (p; ) ™
~ (2.6)

[e0]
Q .
v(@,y) = D) (res_, +1es )V (i y) €7+ resy V (pi ) e
n=1
The residues at poles with negative real parts yleld exponentially decay-

ing terms; the residues at p = 0 , yield terms which grow according to the
power law,

In order that wu(x,y) and v(x,y) may be decaying functions, it 1s neces-
sary that the residues at the pole p = O vanish, l.e. it 1s necessary that
resy U (p, y) eP* = 0, resy V (p, y) e"* = 0 (2.7)

But the conditions (2.7) are also sufficient that u{x,y) and wv(x,y) be
decaying functions; this follows from the fact that if these condltlions are
satisfied then u(x,y) and wv(x,y) will not contain nondecaying terms.

Evaluating the residues of U (p; ) ¢™ and V (p;y) "™ at the point p = 0,
we obtain 3y A I 2

x : u
resq U (p; y) eP i TRy <g112+2Bx+m~:;C>

3 A+2u /1 n
reso¥ (55 95 = g p gy (3 A2+ D T 5 0%+ )
1

v

0

(2.8)

where

dy -+ u (0, 1'):I

=0

T -
-

dy—3\ v O, 9 ay + o 0, 1)

0

x=()
1
v
o Py 2@+ 4 \ w0, 9) s + 4 0, 1) 2.9

[}

1 1
1 © du
D=§(3?~+4H)_\°a—
0

o Py — @20\ 0 0, 9) yray +
0

1
du A +p) ( A (3A + 4
+ 25T v o va+ Sadah v o

x
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From (2.7) and (2.8) it follows that
A=0 B=0, C=0, D=0 (2.10)

,_ Thus, if the conditions (2.5) and (2.10) are fulfilled, the displacements
in the semistrip are decaying. From (2.6) and {2.7) it is seen that u(x,y)
and v(x,y) s when x> 0, — 1<% y <1, can be represented by uniformly
convergent serles, epch term of which is exponentially decayling when x- o« .
'I'hés implies that the stresses in the semistrip are also of a decaying char-
acter.

3. In (2.9), the expressions for 4, 5, ¢, p and in (2.4) those for
F(p.) , contain displacements and their derivatives when x = O . C(me can
tr%nsgorm these expressions so that they will contain only the quantities
u(0,v), vy, 0,0,y) and T, (0, y). Then the conditions (2.10) can be
written in the torm v

1
\ oy . %) dy =0 3.1)
0
1
Voo 0,9 vay =0 (3.2
Aob 0 ‘
AN § Ty (00 %) y2dy + 2p § u (0, y) ydy == 0 (3.3)
B+ dp ( ‘
G_(W{:T§"x (0, y) ydy — 2u§ v,y 4*—1)dy=0 (3.4)

and the conditions (2.5) , in the form
1
{10, 0, 9) B 9) + %, 0,90 80 @) + 20 0, 9) 5,0) + 200 0, 0 £, G dy = 0 (3.5)
0 n=1,2,...)
where "
h, () = ppy cos p.y + sin p_y <sin2 P+ TFn P«>

) K
gn (W) = Py sin pyy + cos py (0052 Pt 3 E p) (3.6)

s, (v) = p, [P,y cos py -+ sin p.y (sin?p, + 1)]
tn (W) = p, [P,y sin p oy — cos p,y sin? p,]

The obtained system of conditions (3.1) to {3.5) make it possible to
determine the unknown quantitlies which enter into the solution of the provler
and they permit one to obtain two conditions which must be imposed on the
boundary functions and which are necessary and sufficient for the existence
of decaying solutions,

For the Problem 1, substituting (1.1) in (3.1) and (3.2), we obtain two
condltions 1

1
\hway=0,  {hwyay=o 3.7
0 0

The system of conditions (?.3) to (3.5) serves to determine the unknown
quantities y(0,y) and »(0,y) . The method of the determination of these
quantities will be shown on an example of Problem 4.

For the Problem 2, substituting (1.2) into (3.1) and (3.3), we have the
conditions
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(Ll

1
A' .
AOd=0 Ty \ @y dy 4\ A@vay=0 3.9
0 0

The system of the remaining conditions (3.2), (3.%) and (3.5) permits one
to determine o, (0,y) and v(0,y). However, for the derivation of the decay-
ing solutions of the problem it is not necessary to determine c,(O,y) and
v(0,y) from thls system. Indeed, the solution of the problem contains the
residues of [ (p;y) ¢ and V (p; y) eP* at the poles — p,,— 5,; the values of
these residues can be obtained from (2.3) and 2.43 by replacing p, by
- p, and — P, , respectively. The unknown ¢, (0,y) and v(O,y) are contadnec
in the expressions F(— 7,) and F(- p,) in such a way that they can easily
be eliminated on the basis of conditions (3.5).

For Problem 3, substituting (1.3) into (3.2) and (3.4), we obtain two
conditions
1 1

1
3N+ 4 ¢ :
hww=0 grmg\ieva—\nee-nva=0 @9
0 0 0
Just as 1In the precedl case, 1t 1s not necessary to determine the un-
kaown 7., (0,y) and u(O,y) from the system of conditions (3.1), (3.3) and
(3.5), for these unknowns are easily eliminated from the solution of the
problem on the basis of conditions (3.5).

Let us now consider the Problem 4. The unknown quantities o,(o,y) and
T,y (0s y) are contained in all the conditions (3.1) to (3.4). Hence, the
detrmination of these quantities is required not only for the construction
of the solution of the problem, but also for the derivation of the conditidns
which are imposed on the boundary functions g, (y) and p,(y) in (1.4). The
methods of the functional analysis permit us to determine o, (0,y) and
7., (0,y) from the system of conditions (3.1), 3.2; and 3.5?. After ¢(0,y)
and r,,{0,y) have been determined by means of (3.3) and (3.}), we obtain (in
a quite’ complicated form) the conditions which must be imposed on the bound-
ary functions g, (y) and 7.(y) .

We note that the necessary and sufficient conditions (3.7) to (3.9) for
the decaying of solutions of the Problems 1, 2 and 3, respectively, coincide
with the conditions obtained for these problems in the paper [2] by different
methods. 1In [2] there was established, however, only the sufficiency of the
obtained conditions for Problems 2 and 3.

4, Let us consider the problem of determining the unknown quantities
0,(0,y) and 1 _,(0,y) from the system of conditions (3.1), (3.2) and (3.5).
We note that this system of conditions can be supplemented with the condi=
tions —

Fp,)=20 n=1,2,... (4.1)
which are equivalent to (3.5).
Making use of matrix notation [ 4], we may write

W()—(ox(o,y)> d)()—(h"(y) 8n (¥)° o, ) = (190
P o) Y T ;fn(y)), ”’)"(Oy)

1 (4.2)
an 0
An=<—) Aoz(o) tn= =\ 10 &) 50 @) + 12 ) t, @)1 dy

a, s
For the matrix which 1s the integral of the product of two matrices Ml(y)
and #,{y), we introduce the notation
L
7o Ny =\ M, 0) N, @) ay «3)
0

Taking into account (1.4), we may represent the system of conditions (3.1),
(3.2), (3.5) and (4.1) in the form
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JAD,, W) =1, (n=-0,1,2,...) 4. 4)

The problem of the determination of the matrix w(y) from the condition
(4.4) 1s analogous to the problem of determining a function from its expan-
gion in a nonorthogonal system of functions.

If the infinite system of matrices &,(y) (n=0,1,2,...) 1s complete, the
the conditions (4.%) make it possible to detrmine the matrix W(y) unlquely.
The proof of the completc.ess of the infinite system of matrices ¢,(y) (n=0,1
2,...) has not been carried out, There 1s, however, reason to belleve that
thls system 1s complete.

¥rom the system of matrices ¢ (y){n=0.1,2,...) we go over to an ortho-
ranal gvstom nf motrdines & Y fo =00 T O e aanvy Flhad o modede 4 ..}
g2l Sy38v8m 01 BATIriges Up\Hi \ LT VydsCyrnsnj o RT Say wvidav a hwmllia ¥,\y)
is orthogonal to the matrix ¢, {y}) 1if
1
S ¥, @) ¥ () dy == (4.5)

0

where the asterisk denotes the transposed matrix. We construct the system
of matrices ¢,(y) in the following way:

‘i’o (?/) = (Do ()
¥y (y) = CoV¥, ) + @4 ) (4.6)

.............................

Here the numerical square matrices 00(1), 00(2)’ Clm)a «++ are selected In
such a way that the matrix v, (y) is orthogonal to the matrix ¢, (y) , the
matrix §,(y) is orthogonal to 4,(v) and to 4, {y), and =0 on. We shall

write down the formulas for ¢ (m ¢™ ¢
Co™ = — T (D, ¥o*) I (¥, ¥o¥)
Cl('n) - J ((Dn, \Yl*) J—]" (‘Fx, Wl*} (4.7)
cyf"i = —J(D,, ¥, ) J ¥ Yoy

The existence of the inverses of the matrices in (4.7) 1s easily estab-
lished on the basis of the linear independence of the matrices @, {y) . By
construction, the system of matrices 1, {(v) (n=0,1,2,...) 1s such tgat ¥, (y)
is orthogonal to all §,(y) for which x < » . Recalling that the transpose
of a product of martices is equal to the product of the transposed factors
taken in reverse order, we find that the matrix ¢, (y) is orthogonal to all
matrices ¢, (y) of the system (4.6).

Let us expand w(y) into a series by means of the orthogonal system of
matrices §,{y

W = > Y @a, (4.8)
n=0

For the determination of the matrices a, , which are the coefficients of
the series (4.8), we multiply both parts of Equation (4.8) from the left by
¥,{y) and integrate with respect to y from O to 1 . S8Since the system
¥, {¥) is orthogonal, we get only one term with g, on the right, 1i.e.

J (W, W) =T (¥ ¥, )

Multiplying this relation from the left by a matrix which is the coefflcl-
ent of ?7} B i.e. by J1(¥, , ¥, *, we obtailn g, . Hence, for the coeffici-
. ) :

ents of we have
a, = J71 (¥, ¥.,%J ¥, W) (4.9)
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The coefficients g, can be expressed in terms of 4, by the use of the
relation (4.4). For this purpose we consider succesgively, beginning with
n = 0, the matrices Jfy,, W). With the aid of {4.6) and (4.}) we obtain

J (¥, W) = A, = B,
J(¥y, W) = CVBy +- A, = B,
J (¥, W) = C¥By + C) B, + A, = B, (4.10)

......................

Substituting these expressions in (4.9), we obtain the values of a, .
Thus one can determine the terms of the serles (4.8) for w(y) successively.

8. Let us consider a s etric deformation of a semistrip. In this case
one has to assume that in l(']r.n?l) to (1.4) the functions g (y) are even and
the functions y,(y) are odd, that the coefficlents g, (p), as(p) are zero
in the general solution (1.103, and that in (1.12) the lower bounds of

and y, are O and — 1 , respectively. Determining a,(p) and g,(p) from
(1.13) we have

1 b 2m)
ay (p) = W{bl (1) (—i—“ + coszp) —bs(p, 1) (%ﬁ’ + Pz) -

A W sinp 1 ) l+2ucosp}
_ﬁu(o, 1) (cosp— e )-i- 5~ v (0, 1) (——smp— )

ST
1 .
as (p) = ;,—(;){— b (P, 1)+(—r_’;—g+sm’p)bsm - (5.1)
A i 1
— g u0 1) S‘;‘p + 500 1) coi,p}

(¢ (p) = sin p cos p + p)

The values of b (p, 1) and b»,(p, 1) are obtained from (1.12) if one
takes y=1.

The functions 0(p,y) and v(p,y) have singularities in the complex plane
at he points which correspond to the roots of Equation

¢ (p) =sinpecosp+ p=20 (5.2)
Equation (5.2) has a first order root at the origin and has an Infinite
number of quadruples of complex roots of the first order Py Ppy — D,
—Pn (n=1,2,...).r It is easy to see that U(p; y) has a second order pcﬁe at
the polnt p = 0, and first order poles at the complex roots of Equation
(5.2?, while v(p;y) has first order poles at all the roots of Equatimn (5.2).

Equating to zero the residues of U(p, ¥) €™ and V(p, y) €** at the poles
p, and p, with positive real parts, we obtaln a sistem of conditions which
are necessary and sufficlent in order that the growths of wu(x,y) and v(x,y)

be not more than a power of x , a8 x tends to infinity. This system of
conditions can be written in the form

1
S[G,c 0 9) by @) + Ty 0, 9) 8 ®) + 202 (0, 9) 5, ) + 200 (0, ) 4, dy =0 (5.9)
U ' m=1,2...)

where . 13
by (¥) = ppy sin ppy — (008" Pat i py ) €oS ppy

8n () = — Pay c0S ppy + (sin2 Pt 7 _}:_ m ) sin ppy -4
sy () = p,, Ip,y sin py — (1 + cos® p,) cas p,y]
ty @) = p, [— p,y cos py — cos? p, sin p,y]
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Equating to zero the residues of U (p, y) ™ and V (p, ¥) ¢ at the pole
in; guér:ziobga%: zwo ?ore)conditi?ns ¥h1Ch together with (5.3) are necessary

en at u(x and v(x may not contain nondecayi terms.,

These conditions have théyform v v myine °

1

S 6, (0, y)dy =0 (5.5)
0
1 1
: Ll
2 \u 0,9 ay + g\ 5y 09 iy = 0 5.6)
0 ’ 0

The system of conditions (5.3), (5.5) and (5.6) make it possible to deter-
mine the unimown quantities contained in the solution of the problem, and to
obtain one condition which must be imposed upon the boundary functions to
get necessary and sufficlent conditions for the existence of a decaying solu~
tion. Let us conslder separately each of the four problems which correspond
to the conditions (1.1) to (1.4). For the Problem 1, subatituting (1.1) into
(5.5), we obtain the condition

1
Sidwdy=0 (5.7)

0
The conditions (5.?) and (5.6) permit one to determine the unknown quan-
titles uf{0,y) and »{0,y) , the knowledge of which 1s necessary for obtain-
ing a decaying solut 'on of the problem. In order to go over to the matrix
form, and in order t be able to make use of the method presented above, we
replace the integral from O to 1 in the conditions ?5.3) and (5.6) by
integrals from — 1 co 1, and we also add one obvious condition

1
\ v, pay=o
-1
For the Problem 2, substituting (1.2) into (5.6), we obtain the condition
1

. .
\ 1)y + g ) 2 ) vy = 0 .9)
(1] 0

It is not necess to determine the unknown o, (0,y), v{(0,y) from the
conditions (5.3) and (5.5) because these quantities enter into the solution
in such a way that they can easily be eliminated from i1t on the basis of the
relation (5.3).

For the Problem 3, we substitute (1.3) into (5.5), and obtain a condition
on the function g, {y) . We not that this condition coincldes with the con-
dition (5.7) for the Problem 1. The system of conditions (5.3) permits one
to eliminate the unkmown r,,(0,y) and u(O,y) which enter the solution of
the problem

In case of Problem 4, the uninown quantities o¢,(0,y) and r,,(0,y) appear
in all the conditions (5.3), (5.5) and (5.6). The determination of these
quantities 1s needed for the construction of the sclution of the problem as
well as for the derivation of the condition which has to be lmposed on the
boundary functions g, (y) and 7.(y) in (1.4).

. Por the determination of g,(0,y) and r,,(0,y) in the conditions (5.3)
and (5.5), we replace the integrals from O to 1 by integrals from -— 1
to 1 , we add still another obvious condition

1
S Ty (0, ) dy = 0
—1

go over to the matrix notation, and use the method presented above in the
solution of Problem 4 for the case of skew~symmetric deformations.
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(0,y) thus obtained into (5.6), and replacing

T
20u(0,¥) by 7 (y) , we obtain {he condition which must be 1mposed on the
boundary functions g (y) and z,(y) to yield necessary and sufficient con-
ditions for the existence of a decaying solution.
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