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In connection with the construction of a more precise theory for the bending 
of Plates Cl] there arises the problem of determlnlng the conditions for the 
eXiStenCe of decaying solutions for a semlstrip free of stresses along the 
longutudlnal edges under various boundary conditions. Sufficient conditions 
for existence of decaying solutions, which are expressible by means of series 
in Papkovlch functions [3], were obtained in [2] for two problems that cor- 
respond to prescribing, on the edge, one condition for the stress and one 
condition of displacement. The case when both components of displacement 
are given on the edge, has not been investigated as yet. 

In the present paper the Laplace transform Is used for the derivation of 
solutions of the Lame's equations. This permits one to approach the problems 
corresponding to different boundary conditions from one viewpoint only, and 
to determine necessary and sufficient conditions for the existence of decsy- 
lng solutions. 

1. Let us consider four types of conditions on the boundary x - 0 of 
the semistrip 

'5, (0, Y) = f1 (Y)t TX!, (0, y) = fz (y) (Problem 1) (1.1) 

2p a (0, Y) = f1 (Y), T~,,(O, Y) = fz (Y) (Problem 2) (1.2) 

ox (0, Y) = fl (Y), 2~ v (0, y) -= fa (Y) (Problem 3) (1.3) 

2p a (0, Y) = fl (Y)? 2p L: (0, Y) =' fz (Y) (Problem 4) (1.4) 

The boundary conditions for Y = f 1 , have the following form for each 
of the four problems: 

oI, (z, h 1) = 0, 7x1, (.? + 1) .= 0 (1.5) 

We shall determine the conditions necessary and sufficient) which are 
Imposed on the boundary functions j1 y) , y,(P) In order that the solution 
of the equations of Lame 

(I.ti) 
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which corresponds to the prescribed conditions on the boundary and on the 
semistrip egdes, and has the decaying character in the x-direction, i.e. 
21(x, yl - 0 , V(X, y) - 0 as x - - . 

Let us consider the solution’of Lame’s equations in the class of Functions 
which includes decaying and increasing functions. Let us assume that the 
order of the increasing functions is nor higher than a power of x as x- 0. 

We now apply Laplace’s transform to x in Lame’s equation. Setting 
03 

U (p; y) = 5 u (x, y) e-?‘” dx:, c’ (p; y) = y u (x, y) eer”dx (4.7) 
0 0 

we obtain for U(p; y) and v(p; y) the following second order nonhomogene- 
ous system of ordinary differential equations 

where 

(f, (P1 Y) = (A -t 34 g /x;-o + (A + PI 2 / ._ + (a + 2p) PU (0, Y) 
L-0 

y f.p, Y) = cd g 
x=0 

+ (h + P) 2 1 

(1.9) 

= + WV (0, Y) 
x 0 

The general solution of (1.8) contains four arbitrary constants depending 
on P , and it has the form 

U Ip, y) = al (A sin PY + aa W fm py 9 as (P) p?I ws m + 

+a,tAmsinm+ U,fp;~) (LiO) 

v (P, y) = (- =2 b) - w, (14) sin m + (aI (P) - w8 (p)) cos m f 

+ a4 Cp) Py cm m - a8 (P) PY sin PY C VI (PI Y) 
where 

b, @, Y) = 95 W (P, Y) sin m + Q, (p, y) cos pyl iiy (1.12) 

If the stresses in (1.5) are expressed in terms of displacements, and if 
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one applies the Laplace transform, there results 

Conditions (1.13) permit one to determine the a, (p) (t E 1, 2, 3, 4) 
of (1.10). 

2. Let us next investigate the skewsymmetric deformation of the semistrip. 
We assume that the functions /,((I/) are odd In (1.1) to (1.4) and that the 
functions ~,(a/) are even, that the coefficients 
eral solution are zero, 

a,( ) , a,(p). 
and that In (1.12) the lower g 

In the gen- 

are 
of the ion%ioi Il.13 

res ectlvely 
ounds of J/~ and y, 

P , we ha& 
Determining c, (p) and c3 (p) with the aid 

a1 (PI = - &J [~3(P,l)(cos”P-a~)+Ph*~;1)(-P---(~~~~~)$)- 
a 

- z u (0, 1) sin p + m -j- ( P cos p 

) 
- + U (0, 1) 

( 
h + 2p sin p 

- cosp + x --&- 
11 

(2.1) 

as(p)= -,~[-b,(p,1)+pb,@,I)(--~-~)- 

- $ u (0, 1) co;p - - 4 v (0, 1) y_ , 
. 1 

rp (p) = sin p cos p - p 

The values of bp(p,l) and br(p,l) are obtained from (1.12) by setting 
J/=1. 

From what has been said it follows that Expresslons (1.10) for U(p,u) 
and V(~,JJ) cohtain the quantities 
au / aY when JT = 0 . 

u (x, Y), au I ax, au 1 a~, v (x, Y), a~ 1 ax, 
In the case of the boundary condltlons (l.l)to (1.4), 

only some of these quantities are tiown. Hence,Expesssions (1.10) contain 
quantities known from the boundary conditions as well as unknown quantities. 

In the plane of the complex variable p , the functions U(p,Y) and v(p,Y) 
have singularities at the points which correspond to the roots of Equation 

9 (p) = sin p cos p - p = 0 (2.2) 

This equation has a root of’ the third order at the origin and has an infi- 
nite number of quadruples of complex roots of the first order 

_ 
P,G PTI’ - &I - ??I (n = 2, 2, . . .). 

Correspondingly, U(p,y) has a pole of the third order at the point p = 0, 
and poles of the first order at the complex roots of Equation (2.2), while 
‘/(?,2) has a pole of the fourth order at the point p I 0 and poles of the 
first order at the remaining roots of Equation (2.2). 

By hypothesis, 
order of growth (as 

U(X,V) and !,(x,p) belong to the class of functions whose 
x - m) Is not higher than a power of x . Therefore, 

fdpiy) ami v(p;~) must not have singularities to the right of.the imaginary 
axis. For this It Is necessary that the residues of u (p; y) epx, 1’ Y) epr 
at the poles P,, z, with a positive real part must be zero. But ‘R’ t e vanlsh- 
ing of these residues Is sufficient to insure that the growth order of 
u(r,?J), v(x,Y) (as x - m ) be not higher than a power of x . 

Evaluating the residues of U (p; !I) ?” and l7 (p; r/) e”’ at the Pole pn, we 
obtain 

resp,, U (Pi Y) eps = F W Pn CP: (p,) Li co9 p,, - 
ji-;2:Llj ,,. 

5111 P,,‘/ - pny.cos P,,?l 1 e 
1, irY 

res,, v (p; y) epx = F (P,,) D_m~x~D_~ I( \cos’ pn i-& j cos P&l + p,l!/ sin pn y 
1 

e “nY (2.3) 
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where 

F (P,) = 

-+ Q CP,. Y)[ 1 h + 2p -. pny cos pny - sin pnY cos2 P, - h + p )I1 dY - 

h CA + 2p) P (a + 34 -. 
h+P 

u (0, 1) cos pn - 
A-fP 

u (0, 1) sin pn 

(2.4) 

From the vanishing of the reldues of u (p; y) ePr, V (p; y) epr at the poles 
with positive real parts, it follows that 

F (P,) = 0 (n = 1, 2, . . .) (2.5) 

Making use of the Inversion theorem, we obtain 
o+i fx oiioo 

1 
u (x1 Y) = 2ni s 

1 * 
U (p; Y) epxdp, u b, Y) = 2ni s 

V (P; Y) eQQp (5 > 0) 

0-i co o-i co 

Therefore, 00 

u (r, Y) = 2 (rwp, C res_lD_) U (P; Y) epx + resO U (P; Y) epx 
- I. 

n=1 

03 (2.6) 

v (2, Y) = 2 (recp, fi res_p ) V (p; y) epx + resO V (p; y) eps 
11 TX=1 

The residues at poles with negative real parts yield exponentially decay- 
ing terms; the residues at p - 0 , yield terms which grow according to the 
power law. 

In order that u(s,Y) and u(x,y) may be decaying functions, it is neces- 
sary that the residues at the pole p = 0 vanish, I.e. it is necessary that 

res, U (p, y) ep” = 0, resO V (p, y) eps = 0 (2.7) 

But the conditions (2.7) are also sufficient that u(r,v) and u(x,gj) be 
decaying functions; this follows from the fact that If these conditions are 
satisfied then u(x,Y) and u(x,Y) will not contain nondecaying terms. 

Evaluating the residues of u (p; y) e71x and V (p; y) ePx at the point p - 0, 
we obtain 3y a Ii- 2p 

res, U (pi y) epx = - 7 P (J, + p) f‘122 + 2Bx + h -+~ZIJ , 4 

3 h -F 21-L (2.8) 
resuV (Pi Y)e pr = 8 P (h + p) L Ax3 + 13x2 -j- 3 

where 

1 1 

c =: A \ g jr_ y2dy + 2 (3h + 4~) \ u-(c), Y) Y~Y + Au (0, 1) 
. (2.9) 

0 0 

1 1 

u_~(3h+4p)~~jr=,bdy-(3h+2g)\v(0,y)y2dy+ 

., 
0 0 

+ 
4P (A + P) ? 

h + 2,, \ . v (0, Y) dY + 
3\. (3X + 4P) 
3 (h + 2p) v (O, ‘) 

n 
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From (2.7) and (2.8) It follows that 

A = 0, B = 0, c == 0, I) = 0 (2. IO) 

Thus, If the conditions (2.5) and 2.10) are fulfilled, the displacements 
in the semistrip are decaying. 
and V(X,V) 

Prom 2.6) and (2.7) it is seen that U(X,Y) t 
,when x>O,--lSyGl, can be represented by uniformly 

convergent series, each term of which is exponentially decaying when ~-.m . 
This Implies that the stresses in the semistrlp are also of a decaying char- 
acter. 

3. In (2.9), the expressions for A, B, C, D and In (2.4) those for 
F(P.) 9 contain displacements and their derivatives when x = 0 
tr a om these expressions so that they will contain only the q&n~%,"P 
s (?Y?, v (0, Y), o (0 y) 
written in the f&m' 

and T,. (0, y). !rh en the conditions (2.10) can be 

1 

'J, (0, Y) ydy = 0 (3.2) 

0 
1 1 

4 (h"+ pj 
s 
zw (0, Y) y’dy + 2~ \ u (0, Y) y dy =~: 0 (3.3) 

0 0 
1 

ox (0, Y) ysdy - 2~ v (0, Y) W - 1) dy = 0 (3.4) 

0 0 

and the conditions (2.5) , in the form 

1 

s 
[a,(O, y) h,(Y) + zxu (0, Y) gn (Y) + 2PU (0, Y) S,(Y) + 2p (0, Y) t,(y)l4/ = 0 (3.5) 

0 (n = 1, 2, . . .) 

where 

g, (y) = pny sinp,y + cosP,Y Cos2Pn+ & 
i i 

S,(y) = pn [p,y cos pny -t sin P,Y bin2p, $- I)] 

t, (y) = pn ip,y sin PRY - cos pny sins PJ 

(3.6) 

The obtained system of conditions (3.1) $0 (3.5) make it possible to 
determine the unknown quantities which enter into the solution of the prohler 
and they permit one to obtain two conditions which must be imposed on the 
boundary functions and which are necessary and sufficient for the existence 
of decaying solutions. 

For the Problem 1, substituting (1.1) In (3.1) and (3.2), we obtain two 
conditions 1 1 

s fa (d dy = 0, \ ’ fl(y)ydy =O 
0 0” 

(3.7) 

The system of conditions ( .3) to (3.5) serves to determine the unknown 
quantities ~(0, ) and 

E 
u(O,y The method of the determination of these 

quantities will e shown on an &ample of Problem 4. 

For the Problem 2, substituting (1.2) Into (3.1) and (3.3), we have the 
conditions 
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1 
h 

? 1 

c 
fa(Y) dY=Ot 

?I 
4(h+p) \ fa (Y) Ye dy i+ s 

~I(Y)Y~Y = 0 
0" 0 

The system of the remaining conditions (3.2), (3.4) and (3.5) permits one 
to determine u. (0,~) and v(O,y). However, for the derivation of the decay- 
ing solutions of the problem It Is not necessary to determine a,(O,v) and 
u(O,y) from this system. Indeed, the solution of the problem contains the 
residues of u @;y)ePX and V @;y)epX at the 
these residues' can be obtained from (2.3) and 

- p,,,- Fm;tthe values of 

- p. and - jT., respectively. The unknown 
by replacing pn by 
and u(O,P) are contadned 

In the expressions F(- pn,) and F(- p.) In such a way that they can easily 
be eliminated on the basis of conditions (3.5). 

For Problem 3, substituting (1.3) Into (3.2) and (3.4), we obtain two 
conditions 

1 ? 1 

s fl (!I) Y&l = 0, 6 3?b+ (h+td 4p \ !I (Y) y3dy - 1 fa (Y) (Y' - 1) dy = 0 (3.9) 
0 0 0 

Just as in the precedl it 1s not necessary to determlne the un- 
known T,,(O,~) and u(O,z FEzE'the system of conditions (3.1) (3.3) and 
(3.5), for these unknowns'are easily eliminated from the solutlin of the 
problem on the basis of conditions (3.5). 

Let us now consider the Problem 4. The unknown quantities o,(O,y) and 
T,,(O,~) are contained In all the conditions (3.1) to (3.4). Hence, the 
detrmlnation of these quantities Is required not onl.y for the construction 
of the solution of the problem, but also for the derivation of the condltldne 
which are Imposed on the boundary functions Y,(Y) and yz(~)(~U~l~~. The 
methods of the functional analysis permit us to determine 
T~,(O,P) from the system of conditions (3.1), 
and 

13.21 and [3.5j. ~f~;;a~;OC& 
T.,(O,Z/) havebeen determined by means of 3.3 and 3.4 

a quite complicated form) the conditions which must be Impose: on the bound- 
ary functions /,((I/) and f,(y) . 

We note that the necessary and sufficient conditions (3.7) to (3.9) for 
the decaying of solutions of the Problems 1, 2 and 3, respectively, coincide 
with the conditions obtained for these problems In the paper [2] by different 
methods. In [2] there was established, however, only the sufficiency of the 
obtained conditions for Problems 2 and 3. 

4, Let us consider the problem of determining the -own quantities 
c,(O,y) and T,,(O,Y) from the system of conditions (3.1), (3.2) and (3.5). 
We note that this system of conditions can be suoolemented with the condl- 
tions 

F (ii) = 0 

__ 

(n = 1, 2, . . .) 
which are equivalent to 13.5). 

Making use of matrix notation [41, we may write‘ 

w (Y) = 
(J, (09 Y) ( 1 a, (Y) = ( h, (Y) gn (Y)’ 

- 
-L. !Q, Y) ( \ h, (Y) ii, (Y) > , 

A=(;;), do=(:), .,=-\M8)s,O+ 
0 

For the matrix which Is the integral of the product 
and R,(P), we Introduce the notation 

(4.1) 

@‘o (I.4 = I O ( 1 OY 

(4.2) 

fz (Y) t, (~11 dy 

of two matrices M,(y) 

(4.3) 

Into account (l-4), we may represent the system of conditions (3.1), 
and ('1.1) In the form 
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The problem of the determination of the matrix W(y) from the 
(4.4) is analogous to the problem of determining a function from 
eion in a nonorthogonal system of functions. 

i4.4) 

condition 
its expan- 

Yc! (Y) = @o (Y) 

Yr (Y) = C,('% (Y) + @I (Y1 (4.6) 
.*....‘...****.*.*..... 

+ c’,“l,ul;l iv) + Qn (Y) 

IIf the infinite system of matrices G"(y) (n=O,1,2,...) is complete, the] 
the conditions (4.4) make it possible to detrmine the matrix W(V) uniquely. 
y Proof of the complete.less of the Infinite system of matrices #,,(V) (nP O,i 
. ...) has not been carried out. 

this system is complete. 
There is, however, reason to belleve that 

From the system of matrices #a(y)(n2= o.l,2,...) we go over to an ortho- 
gonal system of matrices *n(Y) (n=O,1,2,...) . We say that a matrix *,(Y) 
is orthogonal to the matrix tr(v) if 

1 

s y’, (v) y,* (?A & = 0 (4.5) 

0 
where the asterisk denotes the transposed matrix. 
of matrices t.(Y) in the following way: 

We construct the system 

**.,,,*...*..*......*.....I....*.....- 

Here the numerical square matrices C,(l), CO@), c,(2), - . s are selected in 
such a way that the matrix $1 (v) is orthogonal to the matrix 6,(k) , the 
matrix 22(y). is orthogonai to *,(y) and to t,(y), and SO on. We shall 
write down the formulas for cc(wt,~~tn) 

cp = - J (a$ Y,*) J-‘, (UT,, Yi*) (4.7) 

l . . . . . . . . . 

The existence of the -verses of the matrices in (4.'() is easil 
lished on the basis of the linear independence of the matrices a,, 
construction, the system of matrices t,(y) (n=O,l,2,...) is such 
is orthogonal to all e*(Y) for which k -C P. . Recalling that'the transpose 
of a product of martices is equal to the product of the transposed factors 
taken In reverse order, we find that the matrix ).(I/) is orthogonal to all 
matrlces $,(Y) of the system (4.6). 

Let us ex d 
'i" 

w(y) into a series by means of the orthogonal system of 
matriaes *II v) 

(4.8) 

n=o 

For the detemnination of the matrices which are the coefficients of 
muLtiply both parts o?E&uation (4.8) from the left bY 

with respect to y from 0 to 1 - Since the system 
we get only one term with a= on the right, i.e. 

mtiplying th;2s rel.ation from the left by a matrix which is the coeffd.ci- 
ent of 
ents of 1 

i.e. by J-~(ym,yY,*f, we obtain 3~. . Hen%=?, for the coeffd.cf- 
4.8) we have 

on = J-1 (Yn, Yy,*) J (Yu,, W) (4.9) 
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The coefficients c. can be expressed in-terms of .d. by the use of the 
relation (4.4). For this pur ose we consider successively, be lnnlng with 
n=O, the matrices J($,, !Vr;' With the aid of (4.6) and (4.f) we obtain 

J(Y,, W) = A, = B, 

J(Y1, W) = C,(l)& i- A, = & 

J (Y,, W) = C,(")B, + cr") Bl + '4, = u, (4.10) 

. . . . . . . . . . . . . . . . . . . . . . 

Substituting these expressions In (4.9), we obtain the values of 
Thus one can determine the terms of the series (4.8) for w(y) success &ly. "1 

5. Let us consider a s 
one has to assume that in 
the functions f.(v) are 
in the zeneral solution (l.lOj, and that 

-1, respectively. 
L(%~2 

-are 0 and 
we have 

COG p ) - ba (p, 1) ( “$,:;;’ +p2)- 

h + 2pcos p 
_ +- +) + $ v (0, 1) (- sin p -m T)) 

1 
a, (P) = cp I h 

I 
- F u (0, 1) (co, P 

1 
a4 (P) - ‘p (p) - -{-b&J)+(& -I- sina P ) b, (p, 1) - 

- A- u (0, 1) 
2P 

(cp @I = sin p cos P + P) 

The values of b,(P, 1) and b3(p, 1) are obtained from 
takes y=l. 

The functions O(p,p) and v(p,y) have singularities in 
at he points which correspond to the roots of Equation 

(1.12) if one 

the complex plane 

$: (p) = sin p cos p + p = 0 (5.2) 

Equation (5.2) has a first order root at the origin and has _an Infinite 

(5.1) 

number of quadruples of complex roots of the first order 
- Pn (n = 1, 2, . ..).* It is easy to see that V(p;u) l-as a sZ&%de~~~e at 

= 0, and first order poles at the complex roots of Equation 
V(p;y) has first order poles at all the roots of Equatim (5.2). 

Equatiy to zero the residues of u@, Y) ep3c and V@, y)epX at the Poles 
with positive real parts, we obtain a s stem of conditGns which 

aP,", zzes%ry and sufficient In order that the grow hs of u(r,v) and u(r,v) E 
be not more than a power of 3: , as x tends to Infinity. This system of 
conditions can be written In the form 
1 

I .l [a, 0% Y) h* (Y) +’ ?q (0, Y) gn (Y) + 2w4 (0, Y) s, (Y) + 2w (0, Y) t,(Y)1 dY = 0 (5.3) 

,O (n = 1, 2, . . .) 

where 
h, (y) = pny sin pny - 

( Co@ Pn + * 1 cos PnY 

gf$ (Y) = - PnY cm PnY + ( sin2 pn + & 1 sin pny 

sn (y) = pn [p,y sin P*Y - (1 + co@ pd cm PnYl 

tn (y) = pn [-- P%Y cos PRY - cosa pn sin PRY I 

(5.4) 



Equating to zero the residues of U (p, Y) e’* and V @, Y)epr at the pole 
P - 0 , we obtain two more conditions which together with (5.3) are necessary 
and sufflclent that U(X,V) and u(x,~) may not contain nondecaging terms. 
These conditions have the form 

s (J, (0, Y) dy = 0 (5.5) 
0 

5 h -. 
2~ o u (0, Y) dy + 2 s(h + p) s TX,, (0, Y) NY = 0 

0 

(5.6) 

The system of conditions (5.3), (5.5) and (5.6) make It possible to deter- 
mine the unlolown quantltles contained In the solution of the problem, and to 
obtain one Condition which must be Imposed upon the boundary functions to 
get neaessary and sufficient conditions for the existence of a decaying solu- 
tion. Let us consider separately each of the four prob&ems whlah correspond 
i; t$ condltione (1.1) to (1.4). For the Problem 1, substituting (1.1) Into 

. , we obtain the condition 

1 

s 51 (Y) dy = 0 (5.71 
6 

The conditions (5. 
tities u(O,y) and 

and (5.6) permit one to determine the unknown quan- 
the knowledge of which Is necessary for obtaln- 

lna a decavina solut'.on of the problem. In order to go over to the matrix 
be able to make use of the m&hod resented above, we 
from 0 to 1 In the condltlons 5.1) and (5.6) br B - 

fob, and in order t 
replace the Integral 
Integrals from - 1 

.- _. 
GO 1 , and we also add one obvious condition‘- . - 

1 

s 
v (0, Y) dy = 0 

-1 

For the Problem 2, substituting (1.2) Into (5.6), we obtain the condition 

1 1 

s fl (Y) dy + 2 (hh+ p) s 52 (Y) ydy = 0 
0 0 

(5.8) 

It 1s not necess to determlne the unknown u (0, ), u(O,g) from the 
conditions (5.3) Wy5.5) because these quantltleb en er Into the solution Y 
In such a way that they can easily be eliminated from It on the basis of the 
relation (5.3). 

For the Problem 
7 

we substitute (1.3) Into (5.5), and obtain a condition 
on the fun&Ion 1, I) We not that this condition coincides with the con- 
dition (5.7) for the F&blem 1. The system of aondltlons (5.3) peru&ta one 
to ellmlnate the Mown T., (0,~) and u(O,y) which enter the SolUtfOn of 
the problem 

In case of Problem 4, the unla~own quantities g=(O,y) and T~,(O,~) appear 
in all the condltlons (5.3), (5.5) and (5.6). The deter&nation of these 
quantltles 1s needed for the construatlon of the Solution of the problem as 
well as fdr the derivation of the oondltlon which has to be imposed on the 
boundary functlotis f, ((v) and y,(y) In (1.4). 

For the determination of o=(O,y) and ~.,(0,y) in the conditions (5.3) 
'and (5.5), we replnee the integrals from 0 to 1 by Integrals from - 1 
to 1 , we add still another obvious condltlon 

-1 

go over to the matrix notation, snd use the -Pethod presented above in the 
solution of Problem 4 for the case of skew-sys&nstrlc deformations. 
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Substituting the quantity T (0,~) thus obtained into (5.6),mdrephc1r$: 
2w(O,v) by A (I/) , we obtain the condition which must be Imposed on-the 
boundary functions yi (v) and y,(v) to yield necessary and sufficient con- 
dltlons for the existence of a decaying solution. 
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